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ABSTRACT 

Filtering is the process of transforming data from an experiment or process into a form 
which is more acceptable for analysis by a computer and/or a person. In the past, most 
filtering has been accomplished by use of analog devices; however, the increasing speed 
and decreasing size and cost of digital components now permits the economical use of 
digital filters to perform many desired filtering operations. 

In this paper, three methods for time domain design of finite-memory digital filters 
are presented. These filters can perform the operations of smoothing, prediction, and 
differentiation either separately or simultaneously and are easily implemented by 
programming on small digital computers or by a hard-wired design using digital logic. 
In addition the use of infinite-memory digital filters and problems encountered in their 
time-domain design are mentioned. 

INTRODUCTION 

In experimental research, it is often necessary to transform experimental data 
into a form which is more useful to the researcher for evaluation either by himself 
or with help from modern computers. In the past, this has usually been accom- 
plished by use of analog filters whose design is based on well-known theory. 
Within the past several years, however, the increasing speed and decreasing size 
and cost of digital computer components have permitted the economical use of 
digital filters to provide the desired transformations in real time. 

Real-time digital filters have several advantages over continuous analog filters. 
First, a greater degree of accuracy can be obtained in the filter realization because 
the accuracy is dependent on the word length and sampling rate of the filter. 
Since these variables are controlled by the designer, the transformations can be as 
accurate as desired. This is opposed to analog filters whose accuracy is highly 
dependent on the components used in their design. Second, a greater variety of 

1 This work was supported by Lawrence Radiation Laboratory under a contract for the study 
of Open and Closed Loop Techniques for Computer Controlled Instrumentation. 
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digital filters can be built, and with computers used for filtering, filter designs can 
be changed by programming which allows one computer to be used for a large 
number of filter designs. Finally, no special components are needed to realize filters 
with time varying coefficients. As a result, digital filters are finding their way into 
an increasing number of applications, particularly when a digital computer is 
already available for use in an experiment or process for data logging and/or 
control. 

GENERAL DIGITAL FILTER THEORY 

Linear digital filter theory is based on the well-known mathematics of linear 
difference equations. The general form of a linear digital filter is expressible as 

y(nT) = Ny &x[(n - k) T] - y b,y[(n - j) T], (1) 
K-0 j-1 

where the (ak , bj) are either constants of functions of the independent variable 
nT. For this paper, (aK , bj) are assumed to be constants. In (I), and elsewhere in 
this paper, y[nT] denotes the present output and y[(n -j) 7’1, j = 1,2,... M - 1 
denotes past filter outputs. The terms X[(n - K) T], K = 0, 1, 2,... N - 1 denote 
present and past inputs to the filter. The symbol nT is used to indicate a discrete 
computation or sampling interval where T is the length of the interval and n is an 
integer. For simplicity and to comply with notation used in most dilference- 
equation theory, (1) can be rewritten as 

N-l 

yn = c &.%-k - z: bj.Yn-e (2) 
K=O 

From a practical point of view, the discrete inputs are assumed to come from 
an analog-to-digital converter. If quantization effects are neglected, the A/D 
converter output for a constant sampling rate is 

x*(t) = x(nT), nT < t < (n + 1) T, 
(3) 

n = 0, 1, 2, 3 ,..., 

where x(t) is the continuous input signal, usually a voltage, and x*(nT) is the value 
of x(t) at time t = nT. In (3) it is assumed that x(t) starts at time t = 0. 

The output of the digital filter yn = y(nT) can appear in two ways. First, yn can 
appear simply as a number on a digital printout. This number must then be 
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related to the range. of the variable being studied. Second, y, can appear as the 
output of a digital-to-analog converter. This variable, which is discrete, can then 
be used directly for display or control. 

A block diagram of a computer used for filtering and a pictorial view of the 
discrete input and output is shown in Fig. 1. Since past inputs and outputs are also 
used in general filter calculations, it is necessary that a digital memory be available 
for storage. 

In time-domain design of digital filters, (2) provides a direct starting point. If, 
however, the frequency response of the filter is desirable, or if frequency-response 
characteristics are used for design, it is necessary to find the Laplace and Z trans- 

A/b Digital D/A 
x(t) computer __c 

converter 
converter 
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Memory c 
past outputs 
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l- y*(t) 

T 7-T 3T 4T t--r;; 

, 1 I I 
.' ._. 

T 2T 3T 4T t* 

FIG. 1. (a) Block diagram of a computer u&l for di&al I&ring; (b) a typical Input-Output 
sequence for a digital filter. 
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form of (2). This is accomplished as follows. The actual digital computer input 
and output time functions can be written as 

x”(t) = 2 x(nT)[p[t - nT] - #u[t - (I? + 1) rJ], 
?%=O 

(4) 

y*(t) = f Y(WbD - nT1 - /.a - 01 + 1) TN, 
?Z=O 

where 

At - nT) = 1, t 2 nT, 12 = 0, 1) 2 )..., 

= 0, t<nT. 

Referring to (2) for the input x(t) starting at time t = 0, it is easily seen that 

YOM) - At - 0 = aoxob(t) - /a - 01, 

. ,  .  .  *  .  .  .  .  .  .  .  .  .  .  . . I . . . . . .  *  . )  (5) 
N-l 

Y&4 - nT) - j.L[t - (?I + 1) T]] = 
[ 

2 &&-., - Mil bjy,+ 
k=O j=l 1 
x [p(t - fin - pit - (n + 1) TIJ 

where II > max N - 1, M - 1. 
Summing this set of equations and letting n approach’infin~ty g&es 

N-i m 

y*(t) = &z. ak c &&[t - HT] - /dt - (,z + 1) T]] 
n=t 

(6) 
M-l co 

- C bj c yn-&l-t - nT1 - dt - (n +m 1-I Cl1 
j=l n=i 

By definition, for r a positive integer, 

x*(t - rT) = 0, 
t < rT 

y*(t - rT) = 0, 
(7) 
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and 

so that 

x,-k = 0, 
n < k, 

h-k = 0, 
(8) 

y*O - rT) = i JiA-4 - nT1 - At - (n + 1) rll, n=r 
(9) 

x*(2 - rT) = i xn-&[t - nT] - p[t - (n + 1) ZJ]. 
n=r 

Using results shown in (9), (6) can be rewritten as 

N-l M-l 

y*(t) = c a,x*(t - kT) - c b,y*(t - jT). 
k=O j=l 

Using the Laplace transform relationships 

%z(t)> = G(s), 
9{g(t - kT)} = G(s) e-lcsT 

(10) 

(11) 

and taking the Laplace transform of (10) yields the transfer function of a digital 
filter 

Y*(s) c;I; t?ke-ksT -zrY. 
x*w 1 + xzyl bje-jST * 

(12) 

Letting z = esT now gives the z transform of the digital filter transfer function as 

(13) 

Equation (12) can be used to find the frequency and phase response of a digital 
filter by letting s = jo and plotting the absolute value and angle of the resulting 
transfer function vs w. It should be carefully noted that the presence of the expo- 
nential functions in (12) can give a magnitude response which is periodic in w with 
period 27r/T where T is the sampling interval. This gives rise to the concept of 
aliasing errors which means that if the sampling rate is not high enough, high- 
frequency components of a sampled signal appear to be the same at the analog-to- 
digital converter output as low-frequency signals. This can be avoided by making 
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the sampling frequency at least two times as high as the highest-frequency com- 
ponent of the signal which is to be sampled. 

Equation (I 2) is used for certain aspects of design and is used when Z-transform 
methods are used to analyze complete digital or-sample-data control systems. In 
such systems, the digital computer is only one of a number of components in the 
overall system. 

The following discussion deals with time domain design of digital filters with 
polynomial inputs. From a conceptual point of view, this type of design is closely 
related to classical methods of data smoothing which use polynomials to fit 
experimental data. The advantages are that digital computers are well-suited for 
operating on polynomial input functions. The main disadvantage of time-domain 
design occurs when frequency characteristics of input signals are of prime interest. 
In this case, it is often best to consider frequency-domain analysis which is well 
described in a recent paper by Radar and Gold [I]. 

TIME-DOMAIN DESIGN OF FINITE-MEMORY DIGITAL FILTERS 

A linear finite-memory digital filter can be represented by the equation 

N-l 

,l;t = 
c ak%-k , 
k-0 

(14) 

where )vn represents the output at time f = nT. and x,,-~ are inputs at times 
(n - k) T, k = 0, I, 2 ,... N - I .-The & will be assumed to be constants, 

Digital filters represented by (14)‘can perform the operations of 

I. Smoothing 

2. Prediction 

3. Differentiation 

either separately or simultaneously. These filters operate on a predetermined 
number of the input samples and for simplicity, the span of the input samples are 
usually considered to be a data window. A typical data window is shown in 
Fig. 2. Note that the window moves down the time axis at the sampling rate and 
that (14) can, for this reason, be considered a form of convolution. Also note that, 
for an input signal starting at r --= 0, or for abrupt changes in the signal for t > 0, 
it takes (N - I) sampling times for all of the data-window points to be aware of 
the change. Thus, the desired filter operation has a transient response which’lasts 
(N - I) sampling periods. This type of operation has no analog counterpart since 
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(II-4T) (II-3T) (~-2’0 (n-1)T (nT) t’--t 

FIG. 2. Typical data window for a finite-memory digital filter. 

analog filters have a transient response due to discontinuities, which possess 
infinite settling time. 

The input to the finite-memory digital filters will be assumed to be a polynomial 
signal plus noise. As in classical theory, for nonpolynomial signals it will be 
assumed that, over a finite-size data window, the input signal can be reasonably 
approximated by a polynomial. The digital filter will then be designed to provide 
the desired transformation while, at the same time, reducing the effect of input 
noise as much as possible. For simplicity, the noise will be assumed to have zero 
mean value, variance c+, and zero correlation between samples. 

FINITE-MEMORY DIGITAL FILTERS FOR SMOOTHING AND PREDICTION 

In general, the operation of smoothing is used to improve the signal-to-noise 
ratio of a signal corrupted by noise. The operation of prediction is used primarily 
for control purposes in digital feedback systems. In both operations, the desired 
filter output is some function of the polynomial input. In practice this is impossible 
to achieve; one can only reduce the noise, not eliminate it. For an input x(t), 
consisting of a polynomial p(t) of order q,- the desired form of a smoothing and/or 
prediction filter is y*(t) = p*(t - olT). From a cotnputer point of view y, = P,+~ 
so that (14) can be written as 

N-l 

P n-a = c ak&k . (15) 
k=O 

The reader should carefully observe that, for 01 positive, the output lags the input, 
while for (Y negative, the output leads or predicts the input, 
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Expandingp,-k and prima in Taylor series about the point nT and collecting like 
terms results in a set of necessary conditions on the constants uk . 

N-l 

Zoak= 1, 

(16) 
N-l 

r = 1,2, 3,4 ,..., q. 

If this set of simultaneous equations is to have a solution, the relationship between 
N and q must be 

N-1 dq. 

However, if we want to choose some of the ak in accordance with other design 
criterion, we will generally assume that 

q<N-1. 

When x(t) is a polynomial signal p(t) plus noise, 

M = PW + 40, (17) 

the expected value of the filter output is 

N-l N-l 

Eb) = c akWn-k + h--k) = c akp,&-, . 
k-0 k=O 

This means that when the polynomial signal p(t) is corrupted by additive noise 
n(t), the expected value of the filter output is due to signal only. 

The variance of the filter output is 

VarW = E{Y, - E{YJY 
N-l N-l 

= E c akh-k - nla-kl - c 
I 

akpn-k 2 
I 

(19) 
k=O k=O 

N-l 
= (J2 c ak2 

k=O 

and it is this function that is to be minimized if the output noise is to be reduced as 
much as possible. 

The design problem is now easily stated, Given a filter input consisting of a 
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qth-order polynomial p(t) plus noise n(t), if the desired output at the nth sampling 
period is y, = pnea: , then the function described by (19) must be minimized with 
respect to the uk subject to the constraints of (16). The resulting ak will give the 
desired sample weights for a finite-memory digital filter. 

This problem can be handled by use of Lagrange multipliers, least-squares 
theory, and least-squares theory using orthogonal polynomials. 

Design Using Lagrange Multipliers 

To minimize the function 

subject to the constraints of (16), we minimize the new function 

N-l N-l o (I 

k=O k=O r=O 
(20) 

with respect to the ak . In (20), the Aj are called Lagrange multipliers. Taking the 
derivatives off@, , a,$) with respect to the ak and setting the results equal to zero 
results in a set of equations, 

ak + ho + kh, + k2h2 + .+* kN-lXq = 0, 

k = 0, 1, 2 ,... N - 1. 
(21) 

By combining (21) and (16) there results a set of N + q + 1 simultaneous equations 
in N + q + 1 unknowns. The solution of these equations give the Xi, i = 0, l,... q, 
whichinturncanbeusedtofindthea,,k=O,l...N-1. 

Example. For q = 0, N - 1 = 3, and (Y = 0, the constraints are 

a0 + al + a2 + us = 1 (22) 

and the set of simultaneous equations resulting from minimization are 

ak + x0 = 0, k = 0, 1, 2, 3. 

Solving (22) and (23) yields A, = a, a, = a, = a2 = a3 = & 
The resulting digital filter is 

(23) 

YTC = 
x* + X,-l + 45-z + xn-_3 

4 (24) 
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and the variance of the output is easily seen to be 

Var(y,} = aa/4. (25) 

It is worth noting that this example is similar to use of ensemble averaging of 
repeated experiments for signal-to-noise enhancement [2]. 

Example. for q = 1, N - 1 = 3, and a! = 0, the constraints are 

ao+al+aa+a3= 1, 

a, + 2a, + 3a, = 0 

and the equations resulting from minimization of (20) are 

a0 + & = 0, 

aI + A0 + 4 = 0, 

a2 + h, + 24 = 0, 

a3 + h, + 3X, = 0. 

(27) 

Solving(26) and (27) results in a digital tilter 

Ym = 
ix, + 4x,-, + &-a - 2%~ 

10 (28) 

whose output variance is 
Varbn} = 70~/10 (29) 

Design Using Least-Squares Theory 

Use of least-squares theqry results in the same infinite-memory digital filters for 
a given order input, as does the Lagrange multiplier method. To see this, first 
assume that the data window starts at time t = 0. (Since the value of the filter 
weights is invariant under time transformation this will cause no problem.) Using 
least-squares theory, the polynomial form of the filter output is assumed and the 
function 

N-l N-l 

R = c [ylc - &I2 = c [b, + bdKT) + b,,(k3”)2 + MkT)* - &cl2 
k=O k-0 

(30) 

is minimized with respect to the.7 polynomial coefficients. The solution of this set 
of equations results in coefficients which are functions of the input samples x8 . 
Substitution of the coefficients back into the polynomial then results in an equation 
ivhich yields the filter weights for a specified data window, 
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Since the general theory of least-square-curve fitting is well described in the 
literature [3], only examples will be given to illustrate how to use the theory in 
filter design. 

Example. For a four-point data window and 

u(t) = ho + bll4 Yn = ho + Mm (30) 
becomes 

R = k [bI, - bl,kT - x,J2. 
k-=0 

Minimizing R with respect to b,, and b,, results in two equations, 

%o + 6% = xo + x1 + x2 + x, , 

6TbIo + 14T2bII = TxI + 2Tx, + 3Txs 

(31) 

(32) 

whose solution gives 
b 

10 
= 7x0 + 4x1 + x2 - 2x, 

10 > 

-3x, - Xl + x2 + 3x, 
(33) 

bu = 10T . 

Substituting (33) into the expression for yn = b,, + bl,nT gives 

Ys = 
7x, + 4x2 + Xl - 2x0 

10 (34) 

Thus, for a general four-point data window and a first-order-polynomial fit, 

Yn = 
7x, + 4x,, + x,-2 - 2x,-, 

10 (35) 

This is exactly the same result that was obtained using Lagrange multipliers and a 
first-order-polynomial input. 

It should be carefully observed that, in both design methods, if the input data is 
not well-approximated by the chosen polynomial over a data window, large 
errors can result which are not due to noise. The errors tend to distort input data 
vastly and should be avoided as much as possible. 

Design Using Orthogonal Polynomials 

The previous design methods unfortunately involve the solution of simultaneous 
equations which generally imply matrix inversion, To eliminate this, orthogonal 
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polynomials can be used in the least-squares design. This method has the advantage 
of being easily and quickly done on a computer which is useful if filter designs are 
to be changed on-line so as to adapt to various input conditions. 

Referring to (30), if the input polynomial v(t) has the form 

.Je> = b,o~o(~) + b%(t) + *** k%w9 (36) 
where the wi(nT) are orthogonal when summed over the data window, then 
minimization of (30) with respect to the bai , j = 0, 1,2,... q, results in the coeffi- 
cient equations 

(37) 

For the previous example, if 

Y = b1owoW + b4t)9 
where 

oo(t> = 1, q(t) = f - 3 T, 
then it is easily seen that 

(38) 

(39) 

j. WOW-) 4W = 0. (40) 

Substituting into (37) gives 

b 
10 

= x0+x1+ x3 + x3 

4 ' 

bu = 
-3x, - x, + x2 + 3x3 

IOT 

(41) 

Substituting (41) into (38) gives a design which is the same as shown in (34). 
The only problem in working with orthogonal polynomials is the determination 

of polynomials which are orthogonal over a given data window. Since most books 
discuss orthogonality in terms of integration over an interval from zero to one, it 
is necessary to set up a recursion formula which gives polynomials which have the 
desired properties. For readers interested in doing this, a report on this subject, 
which contains computer programs, has been written by Peterson [4]. 

FINITE-MEMORY FILTERS FOR DIFFERENTIATION, PREDICTION, 
AND SMOOTHING 

If the operations of differentiation, prediction, and smoothing are required, for 
an input polynomial approximation p(t), the desired output is 

yn = &q * (42) 
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For Lagrange-multiplier design, this leads to a set of constraints 

N-l 

go 'k = '3 

N-l 
&kTax=F, r= 1,2,3 ,..., q (43) 

The remainder of the design works exactly the satie as before. ’ 
In the case of least-squares ‘smoothing, one simply takes the derivative of the 

polynomial which is fit to the data points and substitutes in the values for the 
polynomial coefficients found by-considering smoothing and prediction. 

Example. For 01 = 0, N = 4, and u(t) = b,, + bllf, P(t) = b,, . Thus the 
filter design for diITer&itiation and smoothing, but not prediction is 

Y7l = hl = 
3x, + x,-,l- x,-2 - 3x,-, 

10T 
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Variance reduction factor plotted vs. data window size for a smoothing filter with 
inputs of order 0, 1, 2, 3, 4; OL = 0, 
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FIG. 4. Variance reduction factor plotted vs. data window size for smoothing filters with 
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DESIGN CURVES FOR FIN~E-MEMORY DIGITAL FILTERS 

Figures 3-6 are plots of the variance of the filter output over the variance of the 
noise, plotted vs the data-window size for various types of filters with polynomial 
inputs. The interesting thing a-bout these curves is that, for higher-order smoothing, 
a large data window must be used if significant signal-to-noise enhancement is to 
take place. 

FIG, 6. Variance reduction factor plotted vs. data window size for differentiating smoothing 
and D = (N - 1)/2. 

Figures 7-l 1 are plots of the variance reduction, Var(y)/02, plotted vs /3, where /3 
is defined as 

p = --a + (N - 1)/2 

These curves show that for a given polynomial input and given data window, there 
exist positive values of 01 which yield a maximum of signal-to-noise enhancement. 
It should be carefully noted that higher-degree polynomial inputs cause more 



480 BRUBAKER AND STEVENS 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.1 

Variance reduction factor plotted vs. /J = --01 + (N - 1)/2 for a smoothing filter 
with first-degree polynomial input. Curves are only shown for positive CG 

1.0 

0.9 

0.8 

0.7 

0.6 

: 0.5 

0.4 

0.3 

0.2 

0.1 

FIG. 8. Variance reduction factor plotted vs. fl = --OL + (N - 1)/2 for a smoothing filter 
with second-order polynomial input. Curves are only shown for positive CL 



1.1 

1.0 

12 3 4 5 6 7 

Variance reduction factor plotted vs. fi = --a: + (N - 1)/2 for a smoothing filter 
with a third-order polynomial input. Curves are only shown for positive 0~. 

0.8 

n 
‘d 0.7 
t 
Ir: 
I 0.6 

3 
a 0.5 
d 
9 I 0.4 
2 
2 0.3 

0.2 

0.1 

1 2 3 4 5 6 7 

FIG. 10. Variance reduction factor plotted vs. /J = --01 + (N - I)/2 for differentiating 
and smoothing filter with third-order polynomial input. Curves are only shown for positive 0~. 



482 BRUBAKER AND STEVENS 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

._O,O 

12 

-7 2 -5 -4 -3 -2 -1 0 1 1 3 4-  - -  5 6 7 

@--cI+N-s 
2 

FIG. 11. Variance reduction factor plotted vs. B = --LX + (iV - 1)/2 for a differentiating 
and smoothing filter with second-order polynomial input. Curves are only given for positive (Y. 

relative minima to occur and to get maximum smoothing, one should pick a value 
of /I which gives a minimum and then solve for 01. Readers should also be aware 
that positive values of 01 cause the filter to produce transport delay .into the data, 
and if the filter is used for control, this delay will generally cause the control 
system to be less stable. Negative values of 01, on the other hand, allow prediction 
but tend to introduce noise into the system as the magnitude of OL increase+ 

TIME-DOMAIN SYNTHESIS OF INFINITE-MEMORY DIGITAL FILTERS 

Infinite-memory digital filters can perform all of the operations that can be done 
with finite-memory digital filters plus the operation of integration. Except for the 
case of integration, however, a general method of time-domain design is not known. 
This is primarily due to the presence of the bj terms in,(Z) which do not allow a 
straightforward minimization procedure. One possible solution to the problem 
appears to be a design using the ideas of state space, howevet; at present nothing 
definite can be said concerning this. 

Even so, infinite-memory digital filters can be used; and the reader is referred 
to References [5]-[7] for information on presently-known design methods. These 



FINITE-MEMORY DIGITAt COh@IJTERS 483 

filters do not possess a finite settling time to changes in input signal, but they do 
yield a greater economy of memory space in a computer than do finite-memory 
filters for the same degree of smoothing. 
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