
JOURNALOF COMPUTATIONAL PHYSICS 2,465-483 (1968)

Time-Domain Design of Finite-Memory Digital Filters’

T. A. BRUBAKER AND D. R. STEVENS

College of‘ Engineering, University of Missouri, Columbia, Missouri 65201

ABSTRACT

Filtering is the process of transforming data from an experiment or process into a form
which is more acceptable for analysis by a computer and/or a person. In the past, most
filtering has been accomplished by use of analog devices; however, the increasing speed
and decreasing size and cost of digital components now permits the economical use of
digital filters to perform many desired filtering operations.

In this paper, three methods for time domain design of finite-memory digital filters
are presented. These filters can perform the operations of smoothing, prediction, and
differentiation either separately or simultaneously and are easily implemented by
programming on small digital computers or by a hard-wired design using digital logic.
In addition the use of infinite-memory digital filters and problems encountered in their
time-domain design are mentioned.

INTRODUCTION

In experimental research, it is often necessary to transform experimental data
into a form which is more useful to the researcher for evaluation either by himself
or with help from modern computers. In the past, this has usually been accom-
plished by use of analog filters whose design is based on well-known theory.
Within the past several years, however, the increasing speed and decreasing size
and cost of digital computer components have permitted the economical use of
digital filters to provide the desired transformations in real time.

Real-time digital filters have several advantages over continuous analog filters.
First, a greater degree of accuracy can be obtained in the filter realization because
the accuracy is dependent on the word length and sampling rate of the filter.
Since these variables are controlled by the designer, the transformations can be as
accurate as desired. This is opposed to analog filters whose accuracy is highly
dependent on the components used in their design. Second, a greater variety of

1 This work was supported by Lawrence Radiation Laboratory under a contract for the study
of Open and Closed Loop Techniques for Computer Controlled Instrumentation.

465

466 BRUBAI(ER AND STEVENS

digital filters can be built, and with computers used for filtering, filter designs can
be changed by programming which allows one computer to be used for a large
number of filter designs. Finally, no special components are needed to realize filters
with time varying coefficients. As a result, digital filters are finding their way into
an increasing number of applications, particularly when a digital computer is
already available for use in an experiment or process for data logging and/or
control.

GENERAL DIGITAL FILTER THEORY

Linear digital filter theory is based on the well-known mathematics of linear
difference equations. The general form of a linear digital filter is expressible as

y(nT) = Ny &x[(n - k) T] - y b,y[(n - j) T], (1)
K-0 j-1

where the (ak , bj) are either constants of functions of the independent variable
nT. For this paper, (aK , bj) are assumed to be constants. In (I), and elsewhere in
this paper, y[nT] denotes the present output and y[(n -j) 7’1, j = 1,2,... M - 1
denotes past filter outputs. The terms X[(n - K) T], K = 0, 1, 2,... N - 1 denote
present and past inputs to the filter. The symbol nT is used to indicate a discrete
computation or sampling interval where T is the length of the interval and n is an
integer. For simplicity and to comply with notation used in most dilference-
equation theory, (1) can be rewritten as

N-l

yn = c &.%-k - z: bj.Yn-e (2)
K=O

From a practical point of view, the discrete inputs are assumed to come from
an analog-to-digital converter. If quantization effects are neglected, the A/D
converter output for a constant sampling rate is

x*(t) = x(nT), nT < t < (n + 1) T,
(3)

n = 0, 1, 2, 3 ,...,

where x(t) is the continuous input signal, usually a voltage, and x*(nT) is the value
of x(t) at time t = nT. In (3) it is assumed that x(t) starts at time t = 0.

The output of the digital filter yn = y(nT) can appear in two ways. First, yn can
appear simply as a number on a digital printout. This number must then be

FINITE-MEMORY DIGITAL. COMPUTERS 467

related to the range. of the variable being studied. Second, y, can appear as the
output of a digital-to-analog converter. This variable, which is discrete, can then
be used directly for display or control.

A block diagram of a computer used for filtering and a pictorial view of the
discrete input and output is shown in Fig. 1. Since past inputs and outputs are also
used in general filter calculations, it is necessary that a digital memory be available
for storage.

In time-domain design of digital filters, (2) provides a direct starting point. If,
however, the frequency response of the filter is desirable, or if frequency-response
characteristics are used for design, it is necessary to find the Laplace and Z trans-

A/b Digital D/A
x(t) computer __c

converter
converter

&

Memory c
past outputs

1
l- y*(t)

T 7-T 3T 4T t--r;;

, 1 I I
.' ._.

T 2T 3T 4T t*

FIG. 1. (a) Block diagram of a computer u&l for di&al I˚ (b) a typical Input-Output
sequence for a digital filter.

#I/2/4-9

468 BRUBAKER AND STEVENS

form of (2). This is accomplished as follows. The actual digital computer input
and output time functions can be written as

x”(t) = 2 x(nT)[p[t - nT] - #u[t - (I? + 1) rJ],
?%=O

(4)

y*(t) = f Y(WbD - nT1 - /.a - 01 + 1) TN,
?Z=O

where

At - nT) = 1, t 2 nT, 12 = 0, 1) 2)...,

= 0, t<nT.

Referring to (2) for the input x(t) starting at time t = 0, it is easily seen that

YOM) - At - 0 = aoxob(t) - /a - 01,

. , . . * I * .) (5)
N-l

Y&4 - nT) - j.L[t - (?I + 1) T]] =
[

2 &&-., - Mil bjy,+
k=O j=l 1
x [p(t - fin - pit - (n + 1) TIJ

where II > max N - 1, M - 1.
Summing this set of equations and letting n approach’infin~ty g&es

N-i m

y*(t) = &z. ak c &&[t - HT] - /dt - (,z + 1) T]]
n=t

(6)
M-l co

- C bj c yn-&l-t - nT1 - dt - (n +m 1-I Cl1
j=l n=i

By definition, for r a positive integer,

x*(t - rT) = 0,
t < rT

y*(t - rT) = 0,
(7)

FINITE-MEMORY DIGITAL COMPUTERS 469

and

so that

x,-k = 0,
n < k,

h-k = 0,
(8)

y*O - rT) = i JiA-4 - nT1 - At - (n + 1) rll, n=r
(9)

x*(2 - rT) = i xn-&[t - nT] - p[t - (n + 1) ZJ].
n=r

Using results shown in (9), (6) can be rewritten as

N-l M-l

y*(t) = c a,x*(t - kT) - c b,y*(t - jT).
k=O j=l

Using the Laplace transform relationships

%z(t)> = G(s),
9{g(t - kT)} = G(s) e-lcsT

(10)

(11)

and taking the Laplace transform of (10) yields the transfer function of a digital
filter

Y*(s) c;I; t?ke-ksT -zrY.
x*w 1 + xzyl bje-jST *

(12)

Letting z = esT now gives the z transform of the digital filter transfer function as

(13)

Equation (12) can be used to find the frequency and phase response of a digital
filter by letting s = jo and plotting the absolute value and angle of the resulting
transfer function vs w. It should be carefully noted that the presence of the expo-
nential functions in (12) can give a magnitude response which is periodic in w with
period 27r/T where T is the sampling interval. This gives rise to the concept of
aliasing errors which means that if the sampling rate is not high enough, high-
frequency components of a sampled signal appear to be the same at the analog-to-
digital converter output as low-frequency signals. This can be avoided by making

470 BRUBAKER AND STEVENS

the sampling frequency at least two times as high as the highest-frequency com-
ponent of the signal which is to be sampled.

Equation (I 2) is used for certain aspects of design and is used when Z-transform
methods are used to analyze complete digital or-sample-data control systems. In
such systems, the digital computer is only one of a number of components in the
overall system.

The following discussion deals with time domain design of digital filters with
polynomial inputs. From a conceptual point of view, this type of design is closely
related to classical methods of data smoothing which use polynomials to fit
experimental data. The advantages are that digital computers are well-suited for
operating on polynomial input functions. The main disadvantage of time-domain
design occurs when frequency characteristics of input signals are of prime interest.
In this case, it is often best to consider frequency-domain analysis which is well
described in a recent paper by Radar and Gold [I].

TIME-DOMAIN DESIGN OF FINITE-MEMORY DIGITAL FILTERS

A linear finite-memory digital filter can be represented by the equation

N-l

,l;t =
c ak%-k ,
k-0

(14)

where)vn represents the output at time f = nT. and x,,-~ are inputs at times
(n - k) T, k = 0, I, 2 ,... N - I .-The & will be assumed to be constants,

Digital filters represented by (14)‘can perform the operations of

I. Smoothing

2. Prediction

3. Differentiation

either separately or simultaneously. These filters operate on a predetermined
number of the input samples and for simplicity, the span of the input samples are
usually considered to be a data window. A typical data window is shown in
Fig. 2. Note that the window moves down the time axis at the sampling rate and
that (14) can, for this reason, be considered a form of convolution. Also note that,
for an input signal starting at r --= 0, or for abrupt changes in the signal for t > 0,
it takes (N - I) sampling times for all of the data-window points to be aware of
the change. Thus, the desired filter operation has a transient response which’lasts
(N - I) sampling periods. This type of operation has no analog counterpart since

FINITE-MEMORY DIGITAL COMPUTERS 471

(II-4T) (II-3T) (~-2’0 (n-1)T (nT) t’--t

FIG. 2. Typical data window for a finite-memory digital filter.

analog filters have a transient response due to discontinuities, which possess
infinite settling time.

The input to the finite-memory digital filters will be assumed to be a polynomial
signal plus noise. As in classical theory, for nonpolynomial signals it will be
assumed that, over a finite-size data window, the input signal can be reasonably
approximated by a polynomial. The digital filter will then be designed to provide
the desired transformation while, at the same time, reducing the effect of input
noise as much as possible. For simplicity, the noise will be assumed to have zero
mean value, variance c+, and zero correlation between samples.

FINITE-MEMORY DIGITAL FILTERS FOR SMOOTHING AND PREDICTION

In general, the operation of smoothing is used to improve the signal-to-noise
ratio of a signal corrupted by noise. The operation of prediction is used primarily
for control purposes in digital feedback systems. In both operations, the desired
filter output is some function of the polynomial input. In practice this is impossible
to achieve; one can only reduce the noise, not eliminate it. For an input x(t),
consisting of a polynomial p(t) of order q,- the desired form of a smoothing and/or
prediction filter is y*(t) = p*(t - olT). From a cotnputer point of view y, = P,+~
so that (14) can be written as

N-l

P n-a = c ak&k . (15)
k=O

The reader should carefully observe that, for 01 positive, the output lags the input,
while for (Y negative, the output leads or predicts the input,

472 BRUBAKER AND STEVENS

Expandingp,-k and prima in Taylor series about the point nT and collecting like
terms results in a set of necessary conditions on the constants uk .

N-l

Zoak= 1,

(16)
N-l

r = 1,2, 3,4 ,..., q.

If this set of simultaneous equations is to have a solution, the relationship between
N and q must be

N-1 dq.

However, if we want to choose some of the ak in accordance with other design
criterion, we will generally assume that

q<N-1.

When x(t) is a polynomial signal p(t) plus noise,

M = PW + 40, (17)

the expected value of the filter output is

N-l N-l

Eb) = c akWn-k + h--k) = c akp,&-, .
k-0 k=O

This means that when the polynomial signal p(t) is corrupted by additive noise
n(t), the expected value of the filter output is due to signal only.

The variance of the filter output is

VarW = E{Y, - E{YJY
N-l N-l

= E c akh-k - nla-kl - c
I

akpn-k 2
I

(19)
k=O k=O

N-l
= (J2 c ak2

k=O

and it is this function that is to be minimized if the output noise is to be reduced as
much as possible.

The design problem is now easily stated, Given a filter input consisting of a

FINITE-MEMORY DIGITAL COMPUTERS 473

qth-order polynomial p(t) plus noise n(t), if the desired output at the nth sampling
period is y, = pnea: , then the function described by (19) must be minimized with
respect to the uk subject to the constraints of (16). The resulting ak will give the
desired sample weights for a finite-memory digital filter.

This problem can be handled by use of Lagrange multipliers, least-squares
theory, and least-squares theory using orthogonal polynomials.

Design Using Lagrange Multipliers

To minimize the function

subject to the constraints of (16), we minimize the new function

N-l N-l o (I

k=O k=O r=O
(20)

with respect to the ak . In (20), the Aj are called Lagrange multipliers. Taking the
derivatives off@, , a,$) with respect to the ak and setting the results equal to zero
results in a set of equations,

ak + ho + kh, + k2h2 + .+* kN-lXq = 0,

k = 0, 1, 2 ,... N - 1.
(21)

By combining (21) and (16) there results a set of N + q + 1 simultaneous equations
in N + q + 1 unknowns. The solution of these equations give the Xi, i = 0, l,... q,
whichinturncanbeusedtofindthea,,k=O,l...N-1.

Example. For q = 0, N - 1 = 3, and (Y = 0, the constraints are

a0 + al + a2 + us = 1 (22)

and the set of simultaneous equations resulting from minimization are

ak + x0 = 0, k = 0, 1, 2, 3.

Solving (22) and (23) yields A, = a, a, = a, = a2 = a3 = &
The resulting digital filter is

(23)

YTC =
x* + X,-l + 45-z + xn-_3

4 (24)

414 BRUBAKBR AND STEVENS

and the variance of the output is easily seen to be

Var(y,} = aa/4. (25)

It is worth noting that this example is similar to use of ensemble averaging of
repeated experiments for signal-to-noise enhancement [2].

Example. for q = 1, N - 1 = 3, and a! = 0, the constraints are

ao+al+aa+a3= 1,

a, + 2a, + 3a, = 0

and the equations resulting from minimization of (20) are

a0 + & = 0,

aI + A0 + 4 = 0,

a2 + h, + 24 = 0,

a3 + h, + 3X, = 0.

(27)

Solving(26) and (27) results in a digital tilter

Ym =
ix, + 4x,-, + &-a - 2%~

10 (28)

whose output variance is
Varbn} = 70~/10 (29)

Design Using Least-Squares Theory

Use of least-squares theqry results in the same infinite-memory digital filters for
a given order input, as does the Lagrange multiplier method. To see this, first
assume that the data window starts at time t = 0. (Since the value of the filter
weights is invariant under time transformation this will cause no problem.) Using
least-squares theory, the polynomial form of the filter output is assumed and the
function

N-l N-l

R = c [ylc - &I2 = c [b, + bdKT) + b,,(k3”)2 + MkT)* - &cl2
k=O k-0

(30)

is minimized with respect to the.7 polynomial coefficients. The solution of this set
of equations results in coefficients which are functions of the input samples x8 .
Substitution of the coefficients back into the polynomial then results in an equation
ivhich yields the filter weights for a specified data window,

FINITE-MEMORY DIGITAL COMPUTERS 475

Since the general theory of least-square-curve fitting is well described in the
literature [3], only examples will be given to illustrate how to use the theory in
filter design.

Example. For a four-point data window and

u(t) = ho + bll4 Yn = ho + Mm (30)
becomes

R = k [bI, - bl,kT - x,J2.
k-=0

Minimizing R with respect to b,, and b,, results in two equations,

%o + 6% = xo + x1 + x2 + x, ,

6TbIo + 14T2bII = TxI + 2Tx, + 3Txs

(31)

(32)

whose solution gives
b

10
= 7x0 + 4x1 + x2 - 2x,

10 >

-3x, - Xl + x2 + 3x,
(33)

bu = 10T .

Substituting (33) into the expression for yn = b,, + bl,nT gives

Ys =
7x, + 4x2 + Xl - 2x0

10 (34)

Thus, for a general four-point data window and a first-order-polynomial fit,

Yn =
7x, + 4x,, + x,-2 - 2x,-,

10 (35)

This is exactly the same result that was obtained using Lagrange multipliers and a
first-order-polynomial input.

It should be carefully observed that, in both design methods, if the input data is
not well-approximated by the chosen polynomial over a data window, large
errors can result which are not due to noise. The errors tend to distort input data
vastly and should be avoided as much as possible.

Design Using Orthogonal Polynomials

The previous design methods unfortunately involve the solution of simultaneous
equations which generally imply matrix inversion, To eliminate this, orthogonal

476 BRUBAKER AND STEVENS

polynomials can be used in the least-squares design. This method has the advantage
of being easily and quickly done on a computer which is useful if filter designs are
to be changed on-line so as to adapt to various input conditions.

Referring to (30), if the input polynomial v(t) has the form

.Je> = b,o~o(~) + b%(t) + *** k%w9 (36)
where the wi(nT) are orthogonal when summed over the data window, then
minimization of (30) with respect to the bai , j = 0, 1,2,... q, results in the coeffi-
cient equations

(37)

For the previous example, if

Y = b1owoW + b4t)9
where

oo(t> = 1, q(t) = f - 3 T,
then it is easily seen that

(38)

(39)

j. WOW-) 4W = 0. (40)

Substituting into (37) gives

b
10

= x0+x1+ x3 + x3

4 '

bu =
-3x, - x, + x2 + 3x3

IOT

(41)

Substituting (41) into (38) gives a design which is the same as shown in (34).
The only problem in working with orthogonal polynomials is the determination

of polynomials which are orthogonal over a given data window. Since most books
discuss orthogonality in terms of integration over an interval from zero to one, it
is necessary to set up a recursion formula which gives polynomials which have the
desired properties. For readers interested in doing this, a report on this subject,
which contains computer programs, has been written by Peterson [4].

FINITE-MEMORY FILTERS FOR DIFFERENTIATION, PREDICTION,
AND SMOOTHING

If the operations of differentiation, prediction, and smoothing are required, for
an input polynomial approximation p(t), the desired output is

yn = &q * (42)

FINITE-MEMORY DIGITAL COMPUTERS 477

For Lagrange-multiplier design, this leads to a set of constraints

N-l

go 'k = '3

N-l
&kTax=F, r= 1,2,3 ,..., q (43)

The remainder of the design works exactly the satie as before. ’
In the case of least-squares ‘smoothing, one simply takes the derivative of the

polynomial which is fit to the data points and substitutes in the values for the
polynomial coefficients found by-considering smoothing and prediction.

Example. For 01 = 0, N = 4, and u(t) = b,, + bllf, P(t) = b,, . Thus the
filter design for diITer&itiation and smoothing, but not prediction is

Y7l = hl =
3x, + x,-,l- x,-2 - 3x,-,

10T

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

FIG. 3.
polynomial

Variance reduction factor plotted vs. data window size for a smoothing filter with
inputs of order 0, 1, 2, 3, 4; OL = 0,

478

I.0

0.9

0.8

5
‘: 0.7
c

d 0.6
I
z 6.5
z
s
c 0.4
2

0.3

0.2

0.1

BRLJBAKER AND STEVENS

- q-2 a** 3

0.0 I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Data Window Sire N

FIG. 4. Variance reduction factor plotted vs. data window size for smoothing filters with
o(= (N - I)/2 = center of the data window.

5.0

4.5

4.0

I
:: 3.5
2 _,--

g .i 3.0

f
2 2.5

.u. .--
B d 2.0

2
1.5

1.0

0.5

0.e

FE. 5. %%hce reduction factor plotted vs. data window size for differentiating plus
smoothing; a = 0. (Note that it is easy to introduw mgre(ngise htq a wqrmtiating titer.) -

FINITE-MEMORY DIGITAL COMPUTERS 479

DESIGN CURVES FOR FIN~E-MEMORY DIGITAL FILTERS

Figures 3-6 are plots of the variance of the filter output over the variance of the
noise, plotted vs the data-window size for various types of filters with polynomial
inputs. The interesting thing a-bout these curves is that, for higher-order smoothing,
a large data window must be used if significant signal-to-noise enhancement is to
take place.

FIG, 6. Variance reduction factor plotted vs. data window size for differentiating smoothing
and D = (N - 1)/2.

Figures 7-l 1 are plots of the variance reduction, Var(y)/02, plotted vs /3, where /3
is defined as

p = --a + (N - 1)/2

These curves show that for a given polynomial input and given data window, there
exist positive values of 01 which yield a maximum of signal-to-noise enhancement.
It should be carefully noted that higher-degree polynomial inputs cause more

480 BRUBAKER AND STEVENS

1.0

0.9

0.8

0.7

0.6

0.5

0.1

Variance reduction factor plotted vs. /J = --01 + (N - 1)/2 for a smoothing filter
with first-degree polynomial input. Curves are only shown for positive CG

1.0

0.9

0.8

0.7

0.6

: 0.5

0.4

0.3

0.2

0.1

FIG. 8. Variance reduction factor plotted vs. fl = --OL + (N - 1)/2 for a smoothing filter
with second-order polynomial input. Curves are only shown for positive CL

1.1

1.0

12 3 4 5 6 7

Variance reduction factor plotted vs. fi = --a: + (N - 1)/2 for a smoothing filter
with a third-order polynomial input. Curves are only shown for positive 0~.

0.8

n
‘d 0.7
t
Ir:
I 0.6

3
a 0.5
d
9 I 0.4
2
2 0.3

0.2

0.1

1 2 3 4 5 6 7

FIG. 10. Variance reduction factor plotted vs. /J = --01 + (N - I)/2 for differentiating
and smoothing filter with third-order polynomial input. Curves are only shown for positive 0~.

482 BRUBAKER AND STEVENS

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

._O,O

12

-7 2 -5 -4 -3 -2 -1 0 1 1 3 4- - - 5 6 7

@--cI+N-s
2

FIG. 11. Variance reduction factor plotted vs. B = --LX + (iV - 1)/2 for a differentiating
and smoothing filter with second-order polynomial input. Curves are only given for positive (Y.

relative minima to occur and to get maximum smoothing, one should pick a value
of /I which gives a minimum and then solve for 01. Readers should also be aware
that positive values of 01 cause the filter to produce transport delay .into the data,
and if the filter is used for control, this delay will generally cause the control
system to be less stable. Negative values of 01, on the other hand, allow prediction
but tend to introduce noise into the system as the magnitude of OL increase+

TIME-DOMAIN SYNTHESIS OF INFINITE-MEMORY DIGITAL FILTERS

Infinite-memory digital filters can perform all of the operations that can be done
with finite-memory digital filters plus the operation of integration. Except for the
case of integration, however, a general method of time-domain design is not known.
This is primarily due to the presence of the bj terms in,(Z) which do not allow a
straightforward minimization procedure. One possible solution to the problem
appears to be a design using the ideas of state space, howevet; at present nothing
definite can be said concerning this.

Even so, infinite-memory digital filters can be used; and the reader is referred
to References [5]-[7] for information on presently-known design methods. These

FINITE-MEMORY DIGITAt COh@IJTERS 483

filters do not possess a finite settling time to changes in input signal, but they do
yield a greater economy of memory space in a computer than do finite-memory
filters for the same degree of smoothing.

REFERENCES

1. C. M. RADAR, AND B. GOLD, Proc. IEEE, February, 149-170 (1967).
2. M. P. KLEIN AE~D G. W. BARTON, JR., Rev. Sci. Instr. 34, 754-759 (1963).
3. R. W. HAMMING, “Numerical Methods for Scientists and Engineers.” McGraw-Hill, New

York, 1962.
4. J. PETERSON, Use of Orthogonal Polynomials in Digital Filter Design, Information Systems

Simulation Laboratory Report, No. 2, August, 1967.
5. A. J. MONROE, “Digital Processes for Sampled Data Systems.” Wiley, New York, 1962.
6. H. HOLTZ AND C. T. LEONDFS, J. ACM 13, 262-280 (1966).
7. F. F. Kuo AND J. F. KAISER (Eds.), “System Analysis by Digital Computer.” Wiley, New

York, 1966.

581/2/4-x0

